Diffraction: Powder Method

Diffraction Methods

Diffraction can occur whenever Bragg's law $\lambda = 2d \sin \theta$ is satisfied.

With monochromatic x-rays and arbitrary setting of a single crystal in a beam generally will not produce any diffracted beams.

- Ways of satisfying Bragg's law:
 - Continuously vary λ
 - Continuously vary 0 during the experiment.
- Two main diffraction methods:

Method	λ	θ
Laue	variable	fixed
Powder	fixed	variable

Principal Diffraction Methods

Laue method: single crystal sample, fixed θ , variable λ

used for orienting single crystals

 Powder method: polycrystalline sample, variable θ, fixed λ used in the determination of crystalline structure of materials in powder form

Single crystal diffractometer method: single crystal sample, thin film sample, rotating θ, ω, φ and φ, fixed λ used for determining complex crystal structures from single crystal and thin film

materials

۲

Understanding powder diffraction patterns

Pattern component	Crystal structure	Specimen property	Instrumental parameter						
	Unit cell parameters:	Absorption	Radiation (wavelength)						
Peak Position	a,D,C,α,β,γ	Strain - Stress	<i>Sample alignment</i> Beam axial divergence						
Peak Intensity	Atomic parameters: x,y,z,B,	Preferred orientation Absorption Porosity	Geometry/configuration Radiation (LP)						
Peak shape	<i>Crystallinity</i> Disorder Defects	Grain size Strain - Stress	Radiation (spectral purity) Geometry Beam conditioning						

Bold – key parameters *Italic* – significant influence

Multiple single crystallites are irradiated simultaneously by a monochromatic beam

For a single d_{hkl} :

Multiple single crystallites are irradiated simultaneously by a monochromatic beam

X-ray Diffraction from Polycrystalline Materials

- According to Euclid: "the angles in the same segment of a circle are equal to one another" and "the angle at the center of a circle is double that of the angle at the circumference on the same base, that is, on the same arc".
- For any two points S and D on the circumference of a circle, the angle α is constant irrespective of the position of point P.

X-ray Powder Diffractometer

Powder diffractometers working in the Bragg-Brentano ($\theta/2\theta$) geometry utilize a parafocusing geometry to increase intensity and angular resolution

Divergence Slit:

- Match the diffraction geometry and sample size
- At any angle beam does not exceed sample size

Receiving Slit:

- As small as possible to improve the resolution
- Very small slit size reduces diffracted beam intensity

Variable Slits

Vary aperture continuously during the scanLength of the sample is kept constant

Sample Displacement

Sample Displacement

X-ray Powder Diffractometer

Basic Principles of Crystal Structure Analysis

- The angular positions of diffracted peaks gives information on the properties (size and type) of the unit cell
- The intensities of diffracted peaks gives information on the positions and types of atoms within the unit cell
- General procedure:
 - "index the pattern" \rightarrow assign *hkl* values to each peak
 - determine the number of atoms per unit cell (chemical composition, density, and size/shape of unit cell
 - determine the positions of atoms in the unit cell from the measured intensities

Indexing the pattern – an assumption is made as to which of the 7 crystal systems the unknown structure belongs and then, on the basis of the assumption, the correct Miller indices are assigned to each reflection.

For cubic unit cell:

$$d_{hkl} = \frac{a_o}{\sqrt{h^2 + k^2 + l^2}}$$

so Bragg's law becomes:

$$h^{2} = 4d^{2}\sin^{2}\theta = \frac{4a_{o}^{2}}{\left(h^{2} + k^{2} + l^{2}\right)}\sin^{2}\theta$$

Characteristic line sequences in the cubic system:

- Simple cubic: 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, ...
- Body-centered cubic: 2, 4, 6, 8, 10, 12, 14, 16, ...
- Face-centered cubic: 3, 4, 8, 11, 12, 16, 19, 20, ...
- Diamond cubic: 3, 8, 11, 16, 19, ...

Steps in indexing a cubic pattern:

	1	2	3	4	5	6	7	8	9	10
					FCC			sc	J	всс
measure sample & list angles	Line	sin ² θ	$s = (h^2 + k^2 + l^2)$	$\frac{\sin^2\theta}{s} = \frac{\lambda^2}{4a^2}$	a(Å)	hkl	5	$\frac{\sin^2 \theta}{s}$	s	<u>sin² θ</u>
	1	0.140	3	0.0467	3.57	111	1	0.140	2	0.0700
calculate (sin ² 0)/s _	2_	0.185		0.0463	3.59	200	2	0.093	4	0.0463
for three Bravais	3	0.369	8	0.0461	3.59	220	3	0.123	6	0.0615
lattices	4	0.503	11	0.0457	3.61	311	4	0.123	8	0.0629
	5	0.548	12	0.0457	3.61	222	5	0.110	10	0.0548
	6	0.726	16	0.0454	3.62	400	6	0.121	12	0.0605
	7	0.861	19	0.0453	3.62	331	8	0.108	14	0.0615
	8	0.905	20	0.0453	3.62	420	9	0.101	16	0.0566

If the observed lines are from a particular lattice type, the $(\sin^2\theta)/s$ values should be constant.

Deviations from cubic

Non-cubic structures -- much more complex!

Tetragonal System:

• The $sin^2\theta$ must obey relation:

$$\sin^2 \theta = A(h^2 + k^2) + Cl^2$$

where:
$$A = \frac{\lambda^2}{4a^2}$$
 and $C = \frac{\lambda^2}{4c^2}$ are constants for any pattern

A can be found from *hk*0 indices:

$$\sin^2\theta = A(h^2 + k^2)$$

(*h*² + *k*²) are 1, 2, 4, 5, 8, ...

then C can be found from other lines:

$$\sin^2\theta - A(h^2 + k^2) = Cl^2$$

Hexagonal System:

$$\sin^2 \theta = A(h^2 + hk + k^2) + Cl^2$$

where:
$$A = \frac{\lambda^2}{3a^2}$$
 and $C = \frac{\lambda^2}{4c^2}$

Orthorhombic System:

$$\sin^2\theta = Ah^2 + Bk^2 + Cl^2$$

where:
$$A = \frac{\lambda^2}{2a^2}, B = \frac{\lambda^2}{2b^2}, C = \frac{\lambda^2}{2c^2}$$

The "trick" is to find values of the coefficients A, B and C that account for all the observed $\sin^2\theta$'s when h, k and l assume various integral values

Number of Atoms in the Unit Cell

After establishing shape and size we find the number of atoms in that unit cell.

- Note that the "X-ray density" is almost always larger than the measured bulk density
- We need to know the unit cell volume
- We need to index the powder pattern in order to obtain the unit cell parameters

Number of Atoms in the Unit Cell

- V' volume of the unit cell in Å³
- $\sum A$ sum of the atomic weights of the atoms in the unit cell
 - ρ density g/cm³

For	simple	e ele	ements	:	\sum_{i}	A =	= n ₁	A	where	<i>n</i> ₁	is	number	[·] of	atom	is pe	r unit	cell
										Λ	ic	atomic v	vidia	aht o	fand	alomo	nt
										А	12	atomic	V CI	ynt U			

For	cor	npc	oun	ds:
		 Image: Image: Ima		

where n_2 is number of molecules per unit cell M is molecular weight

Determination of Atomic Positions

Relative intensities determine atomic positions.

The procedure is trial and error. There is no known general method of directly calculating atom positions from observed intensities.

Intensity is given by:

$$V = K \left| F^2 \right|$$

where:

$$F = \sum_{n=1}^{N} f_n e^{2\pi i (hu_n + kv_n + lw_n)}$$

Phase problem

Example CdTe

	dd
We did chemical analysis which revealed:	Line
49.8 atomic percent as Cd	1
 50.2 atomic percent as Te 	2
• Make powder diffraction and list $\sin^2\theta$	4
 Pattern can be indexed as cubic and calculated lattice parameter is: a=6.46 Å 	5 6 7 8
The density is determined as 5.82	0 0
g/cm ³ then	10
$(r, oo)(r, a, c)^3$	11
$\sum A = \frac{(5.82)(6.46)}{1.66042} = 945$	12 13 14
Molecular weight of CdTe is 240.02, number of molecules per unit cell is	15 16

945/240.02 = 3.94, or 4.

Intensity	sin ² 0	hkl
5	0.0462	111
VS	0.1198	220
VS	0.1615	311
~~~~	0.1790	222
m	0.234	400
m	0.275	331
5	0.346	422
m	0.391	511, 333
•	0.461	440
m	0.504	531
m	0.575	620
•	0.616	-533
	0.688	444
m	0.729	711, 551
٧S	0.799	642
s	0.840	731, 553
	C C C C C C C C C C C C C C C C C C C	C C C C C C C C C C C C C C C C C C C

## Example CdTe

Atomic numbers Cd – 48 Te – 52



Powder pattern is consistent with FCC

Two structures that would be consistent with 4 molecules per unit cell are NaCl and ZnS

NaCl -- Cd at 000 & Te at 1/21/21/2 + fcc translations

$$F|^{2} = 16(f_{Cd} + f_{Te})^{2}$$
  
if (*h*+*k*+*l*) is even

$$|F|^{2} = 16(f_{Cd} - f_{Te})^{2}$$
  
if (*h*+*k*+*l*) is odd

ZnS -- Cd at 000 & Te at 1/41/41/4 + fcc translations

$$|F|^{2} = 16(f_{Cd}^{2} + f_{Te}^{2})$$
  
if (*h*+*k*+*l*) is odd

 $|F|^{2} = 16(f_{Cd} - f_{Te})^{2}$ if (*h*+*k*+*I*) is odd multiple of 2

$$|F|^2 = 16(f_{\rm Cd} + f_{\rm Te})^2$$

if (h+k+l) is even multiple of 2

	1	2	3	4	5
Example Cd I e	line	hki	Observed	Calculate	d intensity
	£1110	, nu	intensity	NaCl structure	ZnS structure
	1	111	5	0.05	12.4
		200	nit 👇	13.2	0.03
	2	220	vs	10.0 🗕	► 10.0
	3	311	vs	0.02	6.2
	4	222	vw	3.5	0.007
	5	400	m	1.7	1.7
	6	331	m	0.01	2.5
		420	nil	4.6	0.01
	7	422	S		3.4
	8	511, 333	Ŵ	••••	1.8
	9	440	w		1.1
	10	531	m	••••	2.0
		600, 442	nil		0.005
	11	620	m	••••	1.8
	12	533	w		0.9
		622	nil		0.004
	13	444	w		0.6
	14	711, 551	m	•••••	1.8
		640	nil		0.005
	15	642	vs	••••	4.0
	16	731, 553	5		3.3

(N.B. Calculated intensities have been adjusted so that the 220 line has an intensity of 10.0 for both structures.)

# The Powder Diffraction File

- Experience has shown that the ensemble of *d*-spacings ("*d*" s) and intensities ("*I*" s) is sufficiently distinctive in order to identify phases
- Phase determination can be performed by a comparison of a set of experimental d's and I's with a database of d-I files
  - d spacings are independent of wavelength
- Intensities are relative (most intense = 100 or 1000 or 1)

## Powder Diffraction File (PDF) Database

#### J. D. Hanawalt (1902 - 1987)

							2.4	3 - 2.37	( <u>+</u> .01)	
i	2.42x	2.39	2.33,	2.982	1.592	1.272	1.262	6.94,	(Sc3Ga3)16H	aret
	2 36-	2 30	2.474	1.438	2.008	0.07	2.49	1.03	All CO	
:	2.44	2.373	2.004	2.94	2.59	2.44	2.403	1.003	(ND2C)0	
	2.43	2.308	2.014	1.70	2.507	2.407	3.00.	2.426	(Ag25)24M	10 mar 10 1
	2.40	2.308	2.518	1.708	1.308	2.107	3.406	2.05	(C00.40400.31)0	
i	2.42,	2.38x	2.74	1.33.	1.58,	1.39,	0.87,	0.79,	(Cd ₃ Sc)8H	
i	2.41,	2.38x	2.66x	2.697	2.47,	2.267	3.067	2.72,	ZrP	
i	2.44x	2.37x	2.51,	1.39x	1.28x	1.18x	2.29,	2.14,	(Auz-Ho)H	
	2.43x	2.37x	2.68x	2.34x	4.53,	2.46,	5.18.	3.62.	(Ga,Rh,)M	
i	2.43,	2.37x	2.46	2.06	1.96	3.454	2.27	2.084	(CuZrSi)12O	
i	2.41.	2.37x	2.25x	2.34.	2.23.	2.00.	1.90.	1.79.	(NbFeSi)O	
	2.39x	2.37.	2.54,	2.84.	2.67.	2.31.	1.76.	2.47	(Zr-S)O	
i	2.39.	2.37×	2.49.	1.41.	1.33.	1.32.	1.30.	2.69.	(Nb-C)120	
	2.39x	2.37.	2.03.	2.70.	2.22.	1.95.	1.37.	0.78.	(PrZn.,)48U	
i	2.44	2.36	2.91x	1.83	1.79	1.46.	1.92	1.404	(Te)4P	
;	2.43.	2.36.	2.20x	0.92x	0.81x	0.78x	1.44.	1.33.	(AuGo)4H	
	2.42*	2.36.	1.88.	1.77.	1.53.	1.31.	1.27.	1.23.	Iralla	
ĩ	2.41.	2.36.	2.21×	1.96	1.45	1.34	1.24	0.79	(AuCdla)AH	
	2.41.	2.36x	2.20x	1.44	3.40.	1.95	1 33.	4 34	(Au, Mg)108H	
- 1	2.41.	2.36	1.39	1.08	1 71.	1 18	1.04	1 36	(Moll-)611	
				1.004	1.7 18		1.048	1.000	(m002)00	
:	2.38x	2.36,	2.29,	1.25.	1.23.	3.29	2.94	2.71.	(Ge,Sc,)16H	
i	2.44,	2.35x	2.71.	1.494	1.512	1.362	1.172	1.012	(Al ₃ Zr ₄ )7H	
i	2.41.	2.35x	2.20x	2.19	2.39.	3.64,	2.49,	1.953	(BiPd ₃ )16O	
i	2.38x	2.35x	2.73x	2.32x	2.31x	2.23x	2.13x	1.73x	(Nb,P,)520	
•	2.44x	2.34x	2.05x	1.95,	1.29.	3.43,	2.38,	1.51,	FeSiZr	
0	2.444	2.044	2.004	1.754	1.279	5.455	2.503	1.513	resitr	

# Powder Diffraction File (PDF) Database

<b></b>	1919 Hull pointed out that powder	d 5.5 2.85 3.03	$d in A \\ \lambda = .708$	I I	$\begin{array}{c} d \text{ in } \mathbf{A} \\ \lambda = .708 \end{array}$
	diffraction could be used for routine chemical analyses	<u>1</u> <u>1</u> <u>1</u> , <u>1.00</u> <u>1.00</u> <u>0.80</u>	9.5 8.0 6.7 6.1	0.06 0.02 0.04 0.50	1.92 1.76 1.71 1.69
	<ul> <li>powder pattern is characteristic of the substance</li> </ul>	<u> </u>	5.5 4.85 4.33	1.00	1.56
	<ul> <li>the patterns of a combination of phases will superimpose</li> </ul>	<u>    (e_1 (504)3                                    </u>	\$ 50 \$.03 2.85	0.50 0.90 1.00	7: 44 3 1: 430 1: 370
	<ul> <li>only a small amount is needed</li> </ul>		2.71 2.60 2.47 4.37 2.27	0.0¥ 0.0¥ 0.0¥ 0.0¥ 0.0¥	1.330 1.275 1.260. 1.200 1.200 1.195
<b></b>	1938 Hanawalt, Rinn and Frevel at Dow Chemical compiled diffraction data on about		2.15 2.01	0.35 0.04	1.155
	1000 compounds as 3"x5" file cards and devised a simple means of classifying the	$\frac{\mathbf{D}=}{\mathbf{n}=\boldsymbol{\omega}=\boldsymbol{\varepsilon}=}$	4.01 1.93 1.87	0.05	1.07 1.014 1.052

Card image for  $Ce_2(SO_4)_3$  from PDF Set 1 as issued in 1941

Source: ICDD

I I,

0.12 0.04

0.14 0.04 0.04 0.04

0,20 0.09 0.09 0.06

1942 -- the American Society for Testing Materials (ASTM) published the first edition of diffraction data cards (1300 entries)

data

# Powder Diffraction File (PDF)

- 1962, the d-I's, formulas, and PDF numbers were first keyboarded for a computerreadable database.
- 1969 -- the Joint Committee on Powder Diffraction Standards (JCPDS) was formed as a non-profit corporation to oversee the database
- By 1971 the Powder Diffraction File (PDF) contained 21 sets of data with about 21,500 entries
  - 1978 name change to the International Centre for Diffraction Data (ICDD)



# Powder Diffraction File (PDF)

1 PDF-4+ 2015			1.00														
File Edit Tools Window Help																	
Conen PDE Cards Preferences Search History Results Sieved																	
Courte																	
Search		A	C: 00 007 140														
y subme ▼	Ambient Primary	Quality I	SI - 00-027-140	JZ													
Alkaloids	Press (Non-ambient)	<ul> <li>Bietveld</li> </ul>	File Edit Plots		7	1 1 2 3				-							
-Amino Acids, Peptides & Complexes	Tomo (Neo ambient)	Good		🗵 🔰 🚺	à R	I 🗶		2mc		PD3							
Battery Material	Press & Tamp (Man ambient)	Indexed	Save Print Pref	Ferences Temperature Series Toolbox Property Sheet	2D 3D	Bonds	SAED EBSD Ring	Simulated Pr	ofile Raw D	iffraction	Data						
Carbohydrate	Press. & remp. (vorramblency	<ul> <li>Calculated</li> </ul>	Cu Ka1 1.54056	Å → Simulated Profile (Exp-based	i) 10	0	TF F										
	Atomic Coordinates	— O Protocyping	Fixed Slit Intensit	ty Raw Diffraction Data (PD3)	91	0											
Common Phase	T Raw Diffraction Data	Blank															
			20 (°)	d(A) I h k l *	0	0											
Periodic Table IA IIA IIIB IVB	VB VIB VIIB VIIIB IB	IIB IIIA IVA	28.4422	3.135500 100 1 1 1	71	0											
Chemistry		· · · · · · · · · · · · · · · · · · ·	56,1205	1.637500 30 3 1 1	≥ 6	0											
Crystallography 1.008		<b>S</b>	69.1301	1.357700 6 4 0 0	ISUE 51	0											
2 Li Be Add	And Or Outer Operator:	BC	76.3772	1.245900 11 3 3 1	Ē	0											
Modulated	Not	13 AL 14 Ci	88.0261	1.108600 12 4 2 2													
Diffraction 3 22,990 24,305		26.982 28.086	94.9477	1.045200 6 5 1 1	31	0											
Physical Properties 4 ¹⁹ K ²⁰ Ca ²¹ Sc ²² Ti	²³ V ²⁴ Cr ²⁵ Mn ²⁵ Fe ²⁷ Co ²⁸ Ni ²⁹ Cu ⁸	Zn ³¹ Ga ³² Ge	114.0872	0.980000 7 5 3 1	21	0											
39.098 40.078 44.556 47.867 37 38 39 40	50.941 51.996 54.938 55.845 58.993 58.693 63.546 41 42 43 44 45 46 47 4	85.409 69.723 72.64 8 49 50	127.5409	0.858700 8 6 2 0	11	0					1						
Reference .5 Rb Sr Y Zr 85,468 87,62 88,906 91,224	Nb Mo Tc Ru Rh Pd Ag 92,906 95,94 1981 101.07 102,906 106,42 107,868	Cd In Sn 112 41 114 818 118 71	136.8900	0.828200 3 5 3 3		o			1		1					1	L.
🖓 Results - [Only Si] And [Status (Primary, Alternate)]										8			8				
File Edit Fields Similarity Index Help										70	-		100		400	100	
🛛 🖉 🧖						20	30 40	50	60	70	20 (	90 *)	100	110	120	130	140
Preferences Open PDF Card Simulated Profile	1		PDF					Calculated Par	rameters —								
PDF # QM  Chemical Formula	Compound Name	D1 (A) D2	Evperimental	Space Group: Fd-3m (227)		Mole	ecular Weight: 28.09	g/cm³									
00-005-0565 0 S Si 00-026-1481 0 S Si	Silicon	3.135000 1.	Experimental				Crys	tal Data	3								
00-027-1402 🥥 S Si	Silicon	3.135500 1.	Physical				b. 5 404						5 424 8				
01-078-6300 O S Si	Silicon	2.705260 1.	Crystal	a: 5.431 A			D: 5.4317	A				C:	5.431 A				
04-007-2062 9 S SI 01-070-5680 9 I Si	Silicon	3.135320 1.	Optical	a: 90.00°			β: 90.00°					γ:	90.00°				
01-071-3770 🧿 I Si	Silicon	3.135460 1.	opocu	Volume: 160.18 Å ³			Z: 8.00										
01-071-3902 O I Si	Silicon	2.343000 2.	Structure				Crys	tal Data Axia	al Ratio —								
01-071-4651 01 51	Silicon	8.440860 2.	Miscellaneous	c/a:			a/b: 1.000					c/b:	1.000				
01-072-1426 🥥 I Si	Silicon	2.710770 1.	References	а 				Reduced Ce	ell								
01-072-4559 🥥 I Si	Silicon	3.498740 2.		a: 3.840 Å			b: 3.840	Å				c:	3.840 Å				
01-073-8699 0 I Si	Silicon	1.928930 1.	Comments	a: 60.00°			β: 60.00°					γ:	60.00°				
01-074-6385 🥥 I Si	Silicon	2.332500 2.		Volume: 40.05 &3													
01-074-6394 O I Si	Silicon	2.058390 2.		Volume: 10.00 A													
01-075-0589 0 1 Si	Silicon	3.135420 1.9	20050 1.63742														
01-077-2108 🥥 I Si	Silicon	3.135390 1.9	20020 1.63740	0 C													
01-077-2109 0 1 Si	Silicon	3.134840 1.9	19690 1.63712	0 C													
01-077-2110 0 1 Si	Silicon	3.134890 1.9	19720 1.63714	0 C													
01-089-2749 🥥 I Si	Silicon	3.135240 1.9	19940 1.63733	0 C													
Ant-089-2955 A I Si	Silicon	3 135180 1 9	19900 1.63729														
[Only Si] And [Status (Primary, Alternate)]		Mean: 1.920	100 Å Median: 1	1.920100 Å ESD: 0 Å													

### Computer Searching of the PDF

Computerization has dramatically improved the efficiency of searching the PDF database

Cards are no longer printed – data are on CD-ROM

Numerous third-party vendors have software for searching the PDF database



Computerized "cards" can contain much more crystallographic information



### Experimental Issues and Problems

Searching of the PDF requires high-quality data

- accurate line positions are a must!
- calibration of camera and diffractometer with known d spacing standards
- careful measurement of line intensities
- elimination of artifacts (e.g. preferred orientation)
- solid solutions and strains shift peak positions

 "garbage in, garbage out" -- poor quality data will usually give a poor match





### Whole Pattern Fitting

 Traditional quantitative phase analysis focuses on the intensities of one or a small number of peaks

 Greater accuracy can be obtained by fitting the whole diffraction pattern to what would be expected for a mixture of components

This approach gives an analysis that is an average over all of the peaks, so it is less susceptible to errors that arise from preferred orientation or poor particle statistics

The Rietveld method fits the whole of the diffraction pattern to calculated intensities for the various phases that are present. Gives crystal structure information as well as composition.



Gerzon E. Delgado et al., Avances en Química, 4, 7-11 (2009)



This image from NASA's Curiosity rover shows the first sample of powdered rock extracted by the rover's drill. The image was taken after the sample was transferred from the drill to the rover's scoop. In planned subsequent steps, the sample will be sieved, and portions of it delivered to the Chemistry and Mineralogy instrument and the Sample Analysis at Mars instrument.

### **XRD on Mars**



Schematic diagram of the CheMin instrument and resulting XRF and XRD data.

Bish *et al.* **DUCT J Volume 1 | Part 6 |** November 2014 | Pages 514–522 | 10.1107/S2052252514021150

### **XRD on Mars**





XRD patterns of crushed and sieved (150  $\mu m$ ) NaCl measured on the CheMin III instrument, (left) without and (right) with sonic vibration.

 Bish et al.

 IUCIJ volume 1
 Part 6

 November 2014
 Pages 514–522

 10.1107/S2052252514021150

### XRD on Mars



A two-dimensional XRD pattern for the Rocknest aeolian bedform (dune).

Bish *et al.* 

**IUCLJ volume 1** | **Part 6** | November 2014 | Pages 514–522 | 10.1107/S2052252514021150



Observed (blue, integrated from the two-dimensional image in Fig.6) and calculated (red) plots from Rietveld refinement using data for Rocknest (~26.4 h integration, phases listed in Table1).

UCT Volume 1 | Part 6 | November 2014 | Pages 514-522 | 10.1107/S2052252514021150

Bish et al.